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Abdrad. General relations and constraints which must be satisfied by the topological 
correlations in ZD space-filling random cellular structures are discussed and a topological 
short-range order coeficient is de6ned. Topological models of ZD structures %e associated 
with planar tessellations with topologically unstable sites which belong to I 7 3 polygons. 
The stable configurations, called states, are obtained by replacing every vertex by 2-3  
added sides. The topological properties of the latter models are calculated exactly for a 
distribution of independent and equiprobable states on the various sites and for any value 
of z, The case of the structures associated with tilings by triangles is thoroughly considered. 
The calculated correlations are compared witb the correlations in alumina cuts and in 
random Voronoi froths. The variability of the topological properties of ZD random cellular 
structures is discussed. 

1. Introduction 

The characterization of ZD random space-filling cellular structures includes in ge 
the distributions of metric and topological properties of single cells (cell area, 
lengths, cell perimeter, angles, number n of edges of cells, n,  < n < n2,  where I 
in general). The two-cell correlations of metric or of topological properties have beell 
less investigated except for m ( n ) ,  the mean number of edges of the first neighbour 
cells of n-sided cells (n-cell). A semi-empirid law, the Aboav-Weaire law (Aboav 
1970, 1980, Weaire 1974), states that m ( n )  is linearly related to l / n  by 

m ( n )  = 6 - a  + ( 6 a + p z ) / n  (1) 

where pz is the variance of the distribution P ( n )  of the number n of edges of cells: 
p2 = (n’) - (n)’, with ( n )  = 6 as consequence of Euler’s relation in ZD (Weaire and Rivier 
1984) and ( n m ( n ) ) = p 2 + 3 6  (Weaire sum rule, Weaire 1974). In many natural random 
cellular structures, the parameter a is of the order of 1 (Aboav 1980). If n2=m, an 
upper limit, a < 2, is deduced from m(n)  > 4, which holds whatever n in almost all 
space-filling random structures (section 3). Very recently, Peshkin ef al (1991) have 
again drawn attention to an important two-cell correlation: M J n )  which is the average 
number of k-sided neighbours of an n-cell. A similar two-cell correlation ( f , ( k ) =  
M k ( n ) / n )  has been theoretically considered by Lambert and Weaire (1983) for the 
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sake of deriving a generalization of the Weaire sum rule (section 2). M h ( n )  and m ( n )  
are related by (Peshkin et al 1991): 

G Le Cagr and R Delannay 

n m ( n ) = x  kMk(n) .  (2) 
k 

Besides equation (2), the M,(n) must also obey the following relations (Peshkin et al 
1991, see however section 3): 

Z Mkh) = n (3) 

P ( k ) M . ( k )  = P(n)Mk(n) .  (4) 

A k n  = Mk ( n )/ P (  k )  = Mn ( k )/ P( 1 = Ank (5) 

h 

The topological correlation functions Ah (Akn 0) defined as (Delannay et al 1992a): 

allow comparison of topological properties of tissues with different distributions P ( n ) .  
If the Akn are linear in k and in n, they are uniquely expressed as (Delannay er al1992a): 

(6 )  
where a is the parameter of the Aboav-Weaire law (equation (1)). Peshkin et a/ (1991) 
have applied the maximum entropy principle with constraints imposed on the distribu- 
tion P ( n )  of the number of edges of cells. They have predicted that the M , ( n )  (and 
consequently the Akn) are linear in n in order to reduce the number of independent 
constraints. The positivify constraint restricts the range of a / p 2  for which the linear 
relation (6) may eventually hold to - i sa /p2s0  for n a 3  (Delannay et al 1992a) 
while positive correlations among cells (few-sided cells near many-sided cells) suggest 
that - is  a /p2 (%vier 1993). Outside this range, distortions from linear behaviour 
must occur and the maximum entropy predictions must be corrected in a way which 
has not yet been investigated. A further source of distortion, among others, is due to 
the constraint A,, = 0 discussed in section 3. 

The linearity of Ah in k and in n does not necessarily imply that the associated 
distribution P ( n )  maximizes the entropy, S =  -E P ( n )  log (P(n) / I I (n ) ) ,  with a prior 
I I ( n ) =  1, subject to the two remaining independent constraints: ( l ) = E  P ( n ) = l  and 
(n)=6.  If n(n) = 1, the maximum entropy is indeed only reached for the distribution 
P,(n) =0.75'"'3'/4 ( n a 3 )  which has very unusual features such as a mode at n = 3  
and a large p2 = 12. More realistic distributions may be derived with appropriate prior 
probabilities which are unfortunately diacult to guess. 

Before assessing the validity of the maximum entropy model or of any other theory 
devoted to random cellular structures, it is necessary to characterize in detail the 
topological correlations Mh(n)  or A,. in natural or in simulated cellular structures as 
well as in models. In three previous papers, we have described ZD topological models 
and the correlations Akn in structures associated with a distribution of spins on a 
square lattice ( z = 4 )  both for independent spins and for interacting spins (ZD Ising 
ferromagnet as a function of temperature) (Le Caer 1991a, b, Delannay et al 1992a, 
referred to hereafter as I, 11, 111). The A,, correlations have been compared to 
experimental results published by Lewis (1931) for the epidermal epithelium of a 
220 mm cucumber. A qualitative agreement and an overall fair quantitative agreement 
have been observed to hold between various sets of data (Ill). 

The purpose of the present paper is to extend the exact calculation of the Akn to 
the topological models associated with any mother lattice, more particularly with 

Akn = n + k - 6 - ( a lp2) (  n -6) (  k - 6) 
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tessellations of triangles, in  the case of a distribution of independent and equiprobable 
states (DIES) on the lattice sites for z larger than 4 (I, 11). The calculated Ah will also 
be compared with correlations which have been determined in planar cuts of alumina 
polycrystals with some thousands of cells (Righetti et al1992,1993) and in a simulated 
Voronoi tessellation associated with a ZD Poisson point process (Stoyan et al 1987, 
Brakke, no publishing date). General relations and constraints on the A,, are first 
derived and discussed. 

2. General relations and sum rules satisfied by the correlations Ax. 

Relations ( 2 )  and (3) yield 

(Ah)" =C P(k)Ahn = n ( M k n ) n  = n d n )  
k 

(7) 

where the index (. . .). means that n is fixed. The correlation Ah. can be simply expressed 
as a function of Ph, the probability that a cell with k sides and a cell with n sides are 
neighbours, as 

Akn = 6 P d ( P ( k ) P ( n ) ) .  (8) 

For an 'ideal' arrangement of cells free of correlations, called the topological gas, Pr. 
(Fradkov el al 1987) is 

Ph(unc.) = knP(k)P(n)/36. (9) 

The latter 'ideal' structure with trivalent vertices has cells which share two sides with 
some of their neighbours or one side with themselves if P(3), P(4) # 0 (P3,(unc.) # 0, 
section 3). 

Using relations (8) and (9), it is convenient to define a topological short-range 
order (TSRO) coeecient P k .  = 0.k as 

Pkn = Pk./PkB(unc.) - 1 = Mk(n)/Mk(n)(unc.) - 1 =6Ah./(kn) - 1. (10) 

The TSRO coefficient is negative when k-cells and n-cells tend to repel themselves 
while it is positive if they tend to cluster. It is minimum and equal to -1 if Ar. = 0. 
If the Ah are linear in k and in n (relation (6)), the TSRO coefficient Pr. is given by 

P k n  = - ( I  + 6a/pJ(6 /k-  1 )(6/ n - 1) (11) 

that is P6" = 0 whatever n: the cells with six sides and their nearest neighbours are 
uncorrelated. The point n =6 belongs to all the hyperbola pkn = hn(n) .  Relation (11) 
shows again that a / p z s O  as p,3a -1. Some simple general relations are derived for 
the pkn : 

(kPkn)n = 0 (12) 

(kZPhn)n =61m(n)-mAw(6)} (13 )  

where mAw(6)=6+pz/6 is the value of m(6) if the Aboav-Weaire law (relation (1 ) )  
holds. Finally, a plot of ykn = Pk./( 1 - 6/ k)(  k # 6)  as a function of 6/n - 1 should give 
a unique straight line if relation (6) holds. Deviations from the straight line may be 
quantified by the correlation coefficient of a linear regression analysis. 
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Lambert and Weaire (1983) have generalized the Weaire sum rule (nm( n)) = p2+36. 
Using ((. . .))to denote an average over k and n, the Lambert-Weaire sum rule applied 
to the Akn, is expressed as 

(n"(k'At.).)= ( n P ( k 9 A A )  (14) 
which is an obvious consequence of the symmetry Akn = Ank. Explicitly: 

((n'kPAk.))=C n ' P ( n ) x  kPP(k)Ah. =E kPP(k)C n'P(n)Anh. (15) 

Exchanging the dummy summation indices yields equation (14). The sum rule (14) is 
easily extended from relation (15): 

n h h n 

( ( n  -6)"Kk -6)'&.M = ( ( n  - 6 ) W  -6)'AkA). (16) 
Any constant may be substituted for 6 in equation (16) and negative exponents may 
be considered but singularities must be avoided. Relation A.7 of Delannay et a1 (1992a) 
is simply equation (16) with p =0: 

P9fl+6P9=(((k-6)'Aho)) with p9=((n-6)') .  (17) 
Some nice relations are obtained, among others, for q = -1 and p = 0, 1 respectively: 

1 =((&/k)n) ( m ( n ) )  = (n(Ah/kM (18) 
The general expression described in appendix A4 of 111 (see also Delannay et al 1993) 
verifies all the previous relations and sum rules: 

Akn = n + k - 6 + C  c,[g,(k)g,(n)+g,(n)g,(k)l (19) 
i j  

with (g,,,(k)) = 0. Using the generalized sum rule (14), Lambert and Weaire (1983) have 
analysed the connection between 'a' (relation (1)) and the coefficient of kurtosis 
(p4 /p ; -3 )  of the distribution P ( n ) .  

3. Constraints on the repartition of cells whose vertices are trivalent 

Topological characterization of the second neighbouring cells of a n-cell, topological 
constraints resulting from the condition of convexity or from the condition of vertex 
equilibrium, triplet correlations involving cells sharing a vertex have, to our best 
knowledge, not been sufficiently worked out in the literature. The present section 
describes some elementary but fruitful relations and conditions valid for random 
space-filling cellular structures with trivalent vertices. We define mk(n) as the number 
of k-cells which are first neighbours of an n-cell ( n ,  c n s n2) .  It is a random integer 
variable whose average over n-cells is Mk(n). We assume that P(3), P(4) # 0. 

3.1. Any two cells share at most one side 

A cellular structure with convex cells has A33 = 0 (111). This constraint also holds in 
any 20 structure in which each cell can at most share one side with any cell and no 
side with itself. Similarly, (3-cell,4-cell, 4-cell) triplets are forbidden. Such constraints 
have also been considered by Godrkcbe el ai (1992, see also Yekutieli 1992) in the 
enumeration of planar Feynman diagrams with a cubic interaction, which is needed 
to establish the properties of their topological cellular structure. The latter model is 
the equilibrium state which is obtained by applying repetitively a neighbour switching 
transformation to any initial configuration of cells with trivalent vertices. 
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Furthermore, any 'chain' of first neighbours of an n-cell, 3 - 4 4 ,  . . -4-3, with a total 
length ranging between 3 and n-2, is also forbidden in such structures. Moreover, if 
A3tZ0, relation (3) is no longer strictly valid as, for instance, >3 m k ( n )  = n - 1 for every 
n-cell which belongs to a 3-3-n triplet. Finally, the energetic cost of A3j # 0, which is 
related to the existence of a strongly concave cell, may be locally too large. The 
correlation Ajj is zero for our topological models (k'"(l11, z )  = 0, i I  and equation (24)) 
and there is no (3-4-4) triplet. The (3-cell, 4-cell) pair is even forbidden (A34=0) in 
structures associated with tilings by triangles when z,, z,, z3>4  (section 6, figure 3). 

3.2. Second neighbours 

In the following, we assume that any two cells share at most one side. The second 
neighbours of an n-cell are those cells which share one side with the first neighbours 
of the considered cell without sharing a side with it. The total number of edges of the 
first neighbour cells of a given n-cell being nC(n) ,  the number of second neighbour 
cells is 

s ( n )  = nC(n)-4n - m3(n) .  (20) 

(21) 

Its average over all n-cells is 

s. = n m ( n )  -4n-  M 3 ( n )  

while the average number of second neighbours of a cell is 

S = (s,) = p2 + 12-3P(3). 

Relation (21) has an obvious consequence: as s. must be positive, m ( n )  (as well as 
C(n) )  is larger than 4 whatever n. Therefore, if the Aboav-Weaire law is valid and if 
n2=m, a < 2  follows from relation 1.  A simple drawing, in which a cell with any 
number of sides is surrounded with cells which all have four sides, shows a cellular 
structure in which the considered cell and its first neighbours are completely immersed 
in a cell without a n y  connection with the rest of the structure. 

3.3. Supplementary constraints 

In a cellular structure with convex cells, a cell with a large number of sides cannot 
have too many consecutive four-sided first neighbour cells without creating second 
neighbour concave cells. This will increase the estimation of the minimum value of 
m(m), which may become close to 5, and will decrease the calculated upper limit of 
the Aboav-Weaire parameter 'a'. Ifs. varies as On for n large, this upper limit becomes 
2-a. It would be important at least to guess a reasonable value for a. A simple 
solution for arranging convex cells in a way which is statistically uniform and sym- 
metrical around very large cells, along flat boundaries or around circular boundaries, 
with radii much larger than the average cell size, is indeed to use almost identical 
five-sided cells, If the latter cells surround the central elements with two edges perpen- 
dicular (or nearly) to the boundaries, appealing pentagons with three angles equal (or 
close) to (540-180)/3 = 120" can be created (mitosis of hexagons may yield such 
pentagons). Such a pentagon layer may constitute an efficient transition region between 
the boundaries and the remaining structure. Repartitions of cells which are of that 
type can be seen in ZD pattems of magnetic domains (Babcock and Westervelt 1989), 
in roots or in stems (for instance, fern or asparagus roots, pine stems, Conge 1991). 
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In their statistical theory of ZD grain growth, Abbruvese et al (1992) have used a 
simplified model of circular grains and the assumptions of maximum and random 
surface covering to derive a ‘special linear relationship‘ between (n , ) ,  the average 
number of sides of cells with a given radius r, and r, ((nJ = 3(1+ r , ) ) .  The same model 
results in a correlation, quite similar to the Aboav-Weaire law, (m,)= 
5 + (6f u:n,J) / (n, ) ,  between (m,), the mean number of sides of neighbours of the grain 
of size class i and (n,).  The ‘magic’ number 5 is again retrieved. 

In many cases, (3-4-n) triplets (or 3-m-3 chains of first neighbours of the n-cell 
with m > 1) may raise problems of convexity at least for not too large values of n and 
will give birth to a cell which is simultaneously separated from the n-cell by the 3- 
and 4-cells (or by the 3- and m-cells) and is a first neighbour of the n-cell. 

Such constraints will remain valid in many structures and obviously in all structures 
which can be deformed into a structure with convex cells without changing the topology. 
It is likely that further constraints have still to be discovered. 

We conclude, from the previous simple topological and geometrical arguments, 
that the distributions of 3-cells and 4-cells are correlated and that triplet correlations 
may also play a significant role. These correlations have not yet been fully taken into 
account in theoretical models. They will in general prevent the dimension of the space 
of constraints decreasing to two, as assumed in the maximum entropy model of Peshkin 
el al (1991) and will therefore lead to deviations of the Akn from linear behaviour. 
The only ‘a’ parameter which is consistent with the linear Maxent model in structures 
with P(3)ZO and A,,=O is strictly speaking a =O. The linear model may however 
remain a good approximation in some tissues, eYen for a f 0. This is the case for the 
topological model of Godr&che et a/ (1992) which displays a slight violation of the 
Aboav-Weaire law with a, = -$ (appendix 3) and p2 = 10.5. 

4 .  A brief description of the topological models (I, 11) 

A method for constructing topological models of space-filling random cellular structures 
has been described in previous papers (I, 11) and has been applied to two-dimensional 
structures. The models yield the relative repartition of cells and do not need or provide 
information about angles and cell-edge lengths. 

We consider a lattice in which every site is characterized by its valence z which is 
the number of edges emanating from that vertex (the fraction of vertices with z > 3 ,  
in ZD, being different from zero). In :D, every vertex, which belongs to more than z, 
(=3)  cells, is structurally unstable as its properties change by small deformations. The 
construction method is based on rules which allow removal of this unstability. The 
stable configuration is obtained by adding 2-3 sides at every vertex (Thompson 1917, 
chapter 8, figure 158, I, 11, figure 1). As the chosen rule does not create or annihilate 
cells, a cell of the topological cellular model is associated with every polygon of the 
lattice. Every added side is connected at least to one added side for z > 4  ( I  and 11). 
The latter rule produces a set of Q ( z )  possible stable configurations, called states, 
which have been enumerated as a function of z in 11. Q ( z )  is the Catalan number C2: 

(23) 

Every state is characterized by a z-dimensional vector Sk ( k  = 1,. . , , Q(z ) ) ,  whose 
components Shj ( j  = 1, .  . . , z )  have values in the range from 1 to z -2 (for z = 3, 
Q(3)=  1 and S=(l, 1, 1)). Shj is the number of vertices that polygon number j will 

Q ( z )  = cz-2 = c;;Z4/(z- 1). 
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have at the considered lattice site in the final stable arrangement (figure 1 ) .  The number 
n of sides of the cell is the sum of the S ,  values which are inside the mother lattice 
polygon. The state components allows us to define the neighbours of the previous 
n-cell. Using the state components, it is unecessary to perform the transformation to 
the stable cellular structure in order to investigate its topological properties and full 
profit can be taken from the use of a periodic lattice. As the stable structure at the 
subject lattice site consists of z - 2  trivalent vertices, the sum 

Tk= Skl=32-6 (24) 
1=I 

is independent of the state. A configuration [S,] has been defined (11) as the subset 
of states whose components values (S , )  coincide by a circular permutation in the 
positive or in the negative sense of rotation (for example, the two states (1412313) and 
(1313214) belong to the [1231314] configuration for z = 7 ,  11). 

An equivalent method of construction of the cellular structure uses the Euler’s 
diagonal triangulation of the dual lattice (appendix I and figure 10 of Le Caer 1991b). 

If we consider a polygon of the mother lattice with nL sides ( n L = 3  in figures 1 
and Z), its associated cell (n-cell) in the topological model has two types of neighbours 
(figures 1 and 2 ) :  

unconditional neighbours which are associated with the nL neighbouring poly- 
gons which share one side with the considered lattice polygon 
n - nL conditional neighbours which are associated with the n - nL polygons 
which share one vertex with the previous lattice polygon 

The values of the state components at the nL vertices of the mother lattice polygon 
provide the necessary information about the conditional neighbours. 

We consider a state at a vertex of valence z ( z  4, figure l ( a ) )  of the mother lattice 
and one particular component equal to m (>1). If we draw a graph of the stable 
configuration which is associated with the previous state, the fragment of the final cell 
labelled by m (for instance m = 3 or 4 in figure l ( b ) )  shares m - 1 added sides with 

Figure I. (U) An example of a distribution of states 
on a triangular lattice ( z = 6 ) ,  the corresponding 
values of the number n of cell sides: n (large-size 
figures) is the sum of the state components which 
areinsidethecorrespondingViangle; ( b )  threestable 
states which belong to the three possible con6gura- 
tions for r = 6  ([1412221, [1231231, [1313131); ( c )  
one realization of a cellular structure consistent with 1 the distribution o f  states of (a) .  
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Figure 2. An n-cell ( n  = i + j + k )  of the cellular structure associated with a triangle (bold 
lines) in ihe case ofa tessellation of triangles (respective valences: zr, zz, I,). The triangles 
which will give birth to the three unconditional neighbours and to one among the n - 3 
conditional neighbours of the n-cell have been indicated by Un and CO respectively. The 
variables ( i , s ) ,  ( j , f ) ,  (k, U). which arc state components for I,, r2. z,, respectively, are 
used in section 6 and in appendix I .  

other fragments of cells which are parts of the conditional neighbours. It also shares 
two 'dangling' sides with its two immediate fragments of cells which are part of the 
unconditional neighbours. By extension, we call the two nearest components of a given 
state component its 'unconditional neighbours' (that is Skj,, for the component Skj, 
withj+l=lifj=zandj-l=zifj=l)andthem-lothercomponentsits'conditional 
neighbours' (figures 11 and 12). The latter components may for instance be obtained 
by using the pruning algorithm described in appendix 1 of paper 11. 

5. Distributions indispensable for calculating A,. 

In order to calculate A,,, for a DIES, we must derive some distributions relative to the 
state components. If we write the state components as a Q ( z )  x z matrix, all columns 
contain the same set of values as required by the statistical equivalence of all i polygons 
at any vertex: the set S ,  for the same j is the same for all j. We have calculated in 
I1 the number of states no (m, z )  (relation (4) of paper 11) which have a component 
m = Skj (k = 1,. . . , Q ( r ) ,  m = 1,. . . , z - 2) for a fixed j (which is consequently indepen- 
dent of j) and the corresponding distribution Po(m, 2): 

with 
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and the average ( m )  is (I1 and relation (24)) 

(m)=3(~-2)/z .  (27) 
We have also calculated the number of states &(mli, z) which have an unconditional 
component Sb+,=i knowing that the component &,=m for a given and fixed j 
(relation (7) of paper 11): 

(28) nu (mi i, 2 )  = { ( i  + m - 2)/( z - 3)}C&-,,, . 
The corresponding distribution of the unconditional neighbours of the component m, 
is defined as 

P h l i ,  z)=  n.(mli, z ) / n d m ,  2). (29) 
Without loss of generality, we consider the no(m, z) states which have a Erst component 
equal to m ( m  > 1) .  Amongst the ( m  - l)no( m, I) conditional neighbours (section 4) of 
the components equal to m, ( m  - l)n,(mli, z) are equal to i. The factor ( m  - 1) is a 
consequence of the statistical equivalence of all conditional neighbours. We derive in 
appendix 1 

(30) 

(31) 

n,(mli, z) = (i- l)no(i+ m -4,z-2). 

( i  - I)n,( ilm, z) = ( m  - l)n,( mli, z) 

As there are as many ( i ,  m )  as (m,  i) pairs, the following relation: 

is obeyed as expected. The third distribution which is needed for calculating Ah is 
related to the conditional neighbours of a component ( m  2): 

PJml i  2) = n,(mli, 2)/no(m, 2). (32) 
The distributions defined by relations (26),  (29), (32) will be used in the next section 
for calculating P( n )  and A,. for ZD cellular structures associated with tilings by triangles. 

6. 2~ cellular structures associated with tilings by triangles 

6.1. Theoretical expressions for P(n) and Al. 

We will only consider tilings in which the vertices of every triangle have respective 
valences zl, z,, z3. As shown by figure 2, the number of sides n of the cell associated 
with the bold triangle is a random variable which is the sum of three independent 
random variables (DIES) i, j ,  k with 

2, = z,+ z,+ Z )  (33) 

1 S i S z ,  -2 1 s j s  2,-2 1 6  k S  z , -2 .  (34) 

3 S n S Z, - 6  

As ( n ) = ( i ) + ( j ) + ( k ) = 6  (Euler's relation), the valences z,, z2,  z, must satisfy the 
following condition (relation (27)): 

which has also been derived in various ways by Griinbaum and Shephard (1987). The 
distribution of the number of edges of cells P(n) is given by 
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P d k j ,  k) = Mi, 4 P d j .  z~)Po(S 2%). (37) 

Some values of P(n) and of nm(n)  for particular values of n are given in appendix 
2. As i, j, k are independent variables, the variance fi2 of the distribution P(n) is 
simply derived from equation A2.1 of paper 11: 

3 

fiz= 2(2,-2)(2,-3)(22,-3)/(22,(2,+1)}. (38) 
m = l  

Equations (36) and (38) are easily generalized for a DIES on the vertices of any tiling. 
With the help of figure 2, it i s  simple to deduce 

A,, = ( a ( n  - i - j -  k ) d ( I - s  - t -u)PR,(i, j, k ) F ( i ,  j, k, s, t, u)]/[P(l)P(n)l (39) 

where (i,s), (j, t ) ,  (k, U) range from 1 to 2,-2, zz -2 ,  ~ ~ - 2 ,  respectively, and 
F(i, j, k, s, I, U )  is a sum over the unconditional and conditional neighbours (figure 2). 
Defining 

c.j.k 
S'," 

PR.(~, s,j, O=P.(ils, zI)p.(jlt, 4 

pRU(s, t ,  = PO(% zI)pO(t, z2 )  

(40) 

(41) 

and 

(and similarly for all combination of variables). We finally write 

F(i,j, k, 8, t, U )  

= P ~ ~ ( i s , j ,  t)Po(u,zd+P~.(is,k, u ) P o ( ~ , z ~ )  

+PR.(i, t, k, u)PU(s, zd+(i-1)pe(ib, zl)pRU(f? U )  

+ ( j -  W J j l I ,  z2)pR0(s3 U)+ ( k  - 1)P,(klu, z3)pRo(s, t ) .  (42) 
From the definitions of Po, P. and P, (section 5 )  as well as from relation (31), it is 
readily shown that A,. = Anr. Relations (36) and (39) have been used in a microcomputer 
Fortran program to calculate P(n) and A,. in double precision, with an absolute error 
less than lo-'*, for any possible combination of zl, z z ,  2,. Exact values have been 
calculated for zI = z2 = z3 = 6 (Mathematica would yield exact values in all cases). 
Relation (39) gives the expected correlation A,,=O (section 3) as is uniquely 
obtained for i = j = k = s = t = u = 1 and F (  1,1,1,1,1, 1) = 0. Finally, P( n )  is very well 
approximated by the generalized Poisson distribution (Consul 1989) for p 2 3  3 (relation 
(44)). 

6.2. Results 

There are ten triplets (z,,zz,z3) which verify relation (35) (table 1 ,  Griinbaum and 
Shephard 1987). All the numerical calculations have been checked with the help of 
relations (7) and (A2.5)-(A2.8). However, for the six triplets indicated by a star in 
table 1 ,  it is not possible to extend the neighbourhood of a starting vertex to a tiling 
of the plane (Griinbaum and Shephard 1987, chapter 2). 

The P( n )  and A, calculated with the relations of section 6.1 forthe six 'pathological' 
triplets verify nevertheless all conditions which must be fulfilled by these quantities 
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Table 1. Some characteristics ofihe ZD cellular structures associated with tilingsby triangles 
(except z = 4 for the square lattice and P = 5 for a tiling by squares and triangles, I, 11) 
sorted in order of increasing p2,  the variance of P(n)  zr is an effective valence calculated 
fmm nlatioos (A2.3) and (A2.4); a, is the Aboav-Weaire parameter calculated from 
relation (A3.1); the asterisk indicate triplets, which verify condition ( 3 9 ,  for which a tiling 
of the plane does not exist). 

4 

6-6-6 

5 
(squ+Tr) 
5-5-10' 

48-8 

4-6-12 

45-20* 

3-12-12 

3-10-15* 

3-9-18* 

34-24" 

3-7-42* 

(4 
4 

6 

5.38 

6.783 

6.775 

7.542 

10.134 

9.354 

9.721 

10.450 

12.250 

18.234 

1 

1817 
(2.571 43) 
194175 
(2.58667) 
784/275 
(2.85091) 
71/24 
(2.95833) 
5691182 
(3.126 37) 

(3.505 71) 
105126 
(4.038 46) 
22391550 
(4.070 91) 
7061171 
(4.12865) 
509/120 
(4.241 67) 
9385/2107 

1227/350 

(4.454 20) 

1.5 

1 

1.212618 

0.725 510 

0.721 831 

0.532 514 

0.142 439 

0.214 286 

0.176 838 

0.110997 

-0.015 037 

-0.242 860 

0.375 

0.236 880 

0.238 934 

0.228 923 

0.219 353 

0.218321 

0.212 208 

0.187 306 

0.187 244 

0.187 115 

0.186794 

0.185914 

(introduction). This stems in part from the fact that the averaging procedure which is 
performed on all states in the calculation of both P ( n )  and A,, decouples the successive 
zp ( p  = 1,2,3) sectors at the vertices which contribute to Po (s, 2,) and PRo(s, t ) ,  etc, 
in the first three terms and in the last three terms of equation (42) respectively (figure 
2). It is therefore possible to calculate all the previous properties without knowing 
how to construct the associated cellular structure. We have not been able to prove if 
a given set of P ( n )  and A,. which fulfils all constraints suffices to define a cellular 
structure with such topological properties or if extra conditions are required. The 
'pathological' results have nevertheless been included in the following analysis. 
Appendix 3 further describes a set of P ( n )  and A,,, valid for n, I >  4, which yields the 
Aboav-Weaire law with a = -1. 

Some correlations have been plotted in figure 3: the trend towards an increase of 
A,, with 1 for small n is progressively transformed into a trend towards a decrease for 
large n. Figure 3 ( n )  moreover shows the curvature due to the positivity constraint for 
large I and n. The Aboav-Weaire parameter ow decreases with p2 (table 1) and becomes 
negative for large values of p2. The topological structures considered by Peshkin et 
al (1991) and by Godrkche el al (1992) also show negative values of 'a ' ,  close to -1, 
for p2= 10. Empirical relationships describe with a good accuracy the dependence of 
a, and of a,//& on an effective valence z, defined by relations A2.3 and A2.4 
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Figure 3. Correlations A,, for cellular structures associated with tilings by triangles: 
( a )  q = 3 ,  2 ~ ~ 1 2 .  i,=12 (DIES, 3S! ,  n 4 n 2 = 2 1 ,  A,#O); ( b )  r , = 4 ,  r2=6 .  1 , = 1 2  
(DIES, 3 s  5 n 4 "1 = 16, A, = 0). In both cases I decreases from top to bottom in the 
left part (n =4) while it tends to increase in the right part ( n  = nz). 

Flguw 4. The Aboav-Weaire parameter a* (full circles) and a w / k  (open circles) as a 
function of the effective valence 1. (appendix 2) for the cellular StNctureS of table 1. 
The full lines are calculated from (a, = -0.52+4.663/(2.-3), ~ 3 6 )  and from 
((lw/p2= -0.196+ 1.683/(2.-3), 1-34), 
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n 
2 

Figure 5. Mean total number of sides nm(n) of the first neighbour cells of n-cells for a 
DIES on the vertices of a 3-12-12 tiling. The straight line is obtained from a fit in the range 
3-10. 

(appendix 2) (figure 4) and the dependence of a, on p2: 

a, = -1.486+6.341/p2 for ~ ~ 9 2 . 5 .  (43) 
Figure 5 shows nm(n)  for a cellular structure associated with a DIES on the vertices 
of a 3-12-12 tiling. The straight line of figure 5 suggests that an Aboav-Weaire law 
with a=0.175*0.010, close to a,=0.2143 (table l ) ,  holds for a limited range of n 
(3 s n s 10). The Aboav-Weaire law is never rigorously verified in the structures 
associated with tilings by trangles but nm( n )  departs often not so much from linearity 
for n ranging from 3 to =IO. The curvature of nm(n) is clearly seen for large n values 
which are not usually accessible in typical experiments. Extrapolation of the nm(n)  
behaviour observed in a restricted range of n must be performed with care. 

7. Comparison of topological models with natural or artificial structures 

7.1. Alumina cuts 

As already emphasized (111, the distributions P ( n )  of structures associated with a DIES 
on the vertices of any tessellation with z 5 are typical of the P(n) of planar cuts of 
polycrystals and differ from the P ( n )  of soap froths. The topological and the metric 
properties of planar cuts of polycrystals, showing about 7000 grains, have been recently 
characterized by Righetti et al (1992, 1993). We have used the latter data to calculate 
Ah from the 4310 most central grains. As a, = 1.19 and p2 =2.585 for the polycrystal 
cut, we have chosen to compare its Akn correlations with the correlations in a structure 
associated with a DIES on the pentavalent vertices of a tessellation of squares and 
triangles (figure 1 of reference 11) with a,= 1.2126 and p2=2.5867. The distribution 
P(n), nm(n)  (figure 6)  as well as Akn (figure 7)  are quite similar. 

7.2. Random Voronoi froth 

The Voronoi tessellation (RVF) associated with a ZD Poisson process has been investi- 
gated by various authors. Using the simulation results of Brakke (report without 
publishing date) with more than two hundred million cells, we calculate a ,  = 0.6471 
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0,s : 0 , 2 ~ 1  S 

0,1 

A 
0 

'"2 4 6 8 1 0  1 2 "  
Figure 6. Distributions P(n) and nm(n) of alumina planar cuts (open circles, Righetti er 
ol 1993) and of a structure corresponding to a DIES on a z = 5 lattice (full triangles, 11). 

while p2 = 1,7807 i 0.0004, that is aJpz = 0.3634. The cellular structure associated with 
a DIES on the vertices of a triangular lattice has different values of a, (=1) and p2 
(=2.5714, table 1) but a similar a,/p, ratio (=0.3889). Figure 8 shows the strong 
similarities between the two sets of correlations Akn and of TSRO coefficients pk. in 
the common k, n ranges while the P ( n )  (figure 9) and nm(n)  are definitely different. 
We also notice that the correlations Akn (or pk. )  are rather close in the previous 
alumina cuts and in the RVF. 

The TSRO coefficients show that cells with less than six sides tend to avoid neighbour- 
ing cells with less than six sides while they tend to attract cells which have more than 
six sides. The reverse holds for cells with more than six sides. The TSRO pa. are almost 
equal to zero for the RVF and for z = 6. The strongest deviations between the two sets 
of TSRO coefficients (figure 8) occur either for n = 3 or for n larger than =9. This is 
also true for the models of the present work, for structures with very different p2.  
More generally, we observe a restricted variability of topological properties of different 
structures with similar values of p2. The topological correlations are, for instance, 
quite similar in structures with p2=1 such as biological tissues, king model, tessella- 
tions associated with ZD hard-disk packings, computer simulations including mitosis 
(Delannay et a/ 1992a, Mombach et a/ 1992). No comparison with the topological 
correlations of soap froths can be performed as such data are not available. The 
'inescapable mathematical requirements of space-filling' (Smith 1954, %vier 1985, 
1986,1993), as well as the conditions (section 3) imposed by cell shapes which depart 
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C 
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8. Universal pz =f(P(6) )  relation 

In recent papers, Lemaitre et ai (1992,1993) and Gervois et al(l992) have shown that 
the second moment p2 of the distribution P ( n )  of the number of cell edges varies 
quasi-universally with the fraction P ( 6 )  of six-sided cells. According to Lemaitre et 
a1 (1992b) the relation between p2 and P ( 6 )  is the equivalent in random mosai'cs of 
the virial equation of state in statistical mechanics. Gervois ef al(1992) have investigated 
the ZD mosai'cs obtained by a Voronoi tessellation of a monosize assembly of disks at 
different packing fractions. Applying the maximum entropy principle with the con- 
straints ( l ) =  1, ( n ) = 6 ,  Cf.)=(l/n)=constant, they have been able to derive a theoreti- 
cal p 2  = f ( P ( 6 ) )  relationship which is in good agreement with experiment. Gervois et 
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Figure 8. (a) Correlations A,. ; ( b )  Topological short-range order coefficients &. : for a 
random Voronoi froth (RVF) and for a DIES on a z = 6  lattice (full lines) for 3 8  k s l l ,  
3 8 n 8 15. For the RVF, the correlations have been calculated from the incidence matrix 
given by Brakke. For every figure, the full circles correspond to the smallest value of k, 
the open squares to the intermediate value of k and the full squares to the largest value 
of k 

al (1992), however, emphasize that the calculated results are not very sensitive to the 
choice off, (power law, logarithm or exponential law). Figure 10 shows an extended 
plot of results available from biology, metallurgy, hard-disk experiments and simula- 
tions, soap froths and from various models and computer simulations. Le Caer (1991b) 
has also observed that the topological defect concentration C =3P(3)+4P(4)+5P(S) 
plotted for a number of cellular structures as a function of p2 clusters in a narrow 
region of  the (C, p2)  plane. No structure, amongst the structures considered in figure 
10, seems to deviate significantly from the overall behaviour. Besides the Voronoi 
froths for which 'the essential physics has been lost' (Rivier 1993), these structures 
include the 'pathological' structures of table 1 and even some distributions P ( n )  for 
which it is not proven that they can be associated with any actual cellular structure 
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n 
2 

Figure 9. Distributions P ( n )  for a random Voronoi froth (full circles, Brakke) and for a 
DIES on a I =6 lattice (open circles). 

(see also below). This strongly suggests to ascribe part of the quasi-universal behaviour 
to the strong constraints which act on such structures. As discussed by Le CaEr (1991b) 
for C, a rather narrow range of P(6) and of C may be only available as a consequence 
of ( n )  = 6 for n 2 3 and a given pz if moreover the P( n )  distributions must be 'smooth' 
and bimodal '  (although the distributions are discrete). The preceding arguments are 
reinforced by considering various families of discrete probability distributions which 
depend on two parameters at least. One relation between the parameters enables us 
to fix the mean (n)=6 while the extra degrees of freedom allow varying pz. The 
generalized Poisson distribution and the negative binomial distribution (Consul 1989) 
are examples of such families. The generalized Poisson distribution with a parameter 
A, that we restrict here to 3 2 A a 0, with ( n )  = 6, n 2 3 and pz = 27 /A2  is 

P(n) = A{h+(n  -3)(1- A/3)}'"-4' exp[-A - ( n  -3)( 1 -A/3)]/(n -3)!. (44) 

The product ~ :~P(6 )=4 .5  e-'d=O.38805 is independent of A. When P(6) ranges 
from =0.7 to ~ 0 . 1 ,  the relation pL,"P(6) = 8, with a = 0.540 96,0.5492 and 6 = 0.409 35, 
0.394 14, is a very good approximation of the theoretical values forthe negative binomial 
distribution and the Maxent distribution (figure lo), respectively. For the Voronoi 
tessellations associated with monosize disk assemblies on an air cushion table (LemaFtre 
et QI 1993);we obtain a good agreement with experiment for a = 0.513 and 6 =0.398. 
The reduced variability of a and 6 suggests to fit the data of figure 10 with the latter 
power law. We derive thus a useful approximate relation 

p:513P(6) =0.3893 for 0.7 3 P(6) 3 0.1 (45) 

which yields calculated values of P(6) with a precision in general better than 5% and 
at worst better than ~ 1 0 % .  Relation (45) predicts P(6) = 0.679,0.4332, 0.3177, 0.2896, 
0.1165 instead of P(6) =0.682,0.415,0.305,02947,0.1168, for a packing of disks with 
p2 = 0.338 (Lemahe et QZ 1993), and epidermal epithelium of a 220 mm cucumber 
(Lewis 1931, pZ=0.812),amsoapfroth (Glazier1989,p2= 1.486),therandomVoronoi 
froth (pz=  1.7807) and the model of Godkche et a1 (1992 pz= 10.5) respectively. A 
still satisfactory relation, that is easier to remind, is pZP(6)'= 0.150 (i0.014). Finally, 
the preceding discussion is also in agreement with the reduced variability of the 
topological properties which has been observed in section 7. 
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Flgure 10. p2 = f(P(6)) for various ZD cellular structures. Full lines in ( a )  and ( b )  are 
calculated bytheMaxentmethod wilhtheconstraints(l)= I , ( n ) = 6 , ( ( n  -6) ' )=p,  (given). 
Besides the points ( p 2 ,  P ( 6 ) )  already plotted by Lemailre el a/ (1992, 1993 and references 
therein) or the points taken from the compilation of Glazier (1989), some noteworthy 
paints are: ( a )  the largest p2 value (full circle, Camal and Mocellin 1981, p 2 =  16.4), the 
upper open circle (Godrsche et al1992, p2 = 10.5), the other open circles which correspond 
to structures vith two-sided cells (LeCaPr 1991b, p2=8)  and to 2D Johnson-Mehl froths 
(Frost and Thompson 1987); ( b )  all the paints given in table 1 of the present work (full 
triangles), the open triangles associated with the RVF (Brakke) and with alumina cuts 
(Righetti et a/ 1993). the full circles (Carnal and Mocellin 1981); (e)  the crosses obtained 
from hard-disk simulations (Fraser e! nl 1990 and personal eommunicatioo), the full (air 
table) and open (random sequential absorption) squares results of Lemaitre et a1 (1992, 
1993). the upper and lower full lines are for the topological models on a square lattice for 
independent and Ising distributions of spins respectively (Le Ca2r 1991a, Delannay o nl 
1992b). 
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9. Conclusion 

Constraints on the topological correlations in a number of cellular structures have 
been discussed and a topological short-range order coefficient has been defined. We 
have derived all the distributions which allow exact calculation of the properties of 
the topological models associated with a distribution of independent and equiprobable 
states on the vertices of any mother tiling. These properties have been investigated in 
detail for the case of a DIES on the vertices of tilings by triangles. The topological 
correlations confirm that the DIES structures are typical of the experimental properties 
of polycrystal cuts. 

The natural structures and the artificial structures, with comparable p2 values, 
which have been considered here and in a previous paper (Delannay et al 1992a) 
exhibit similar topological properties when n ranges between =4 and =lo. More 
generally, the toplogical properties seem to vary smoothly when p2 increases. The 
strong constraints acting on 2~ random structures may suffice to explain the fair 
quantitative agreement which exists between the topological properties of various 
cellular structures and the properties of our models which include no physics but 
already take into account many of the most important constraints. The restricted 
variation of properties is a source of confusion which makes it difficult to sort the 
assumptions of a given theory which are actually confirmed by experiment. Although 
our models prevent us by nature to question the validity of any ‘reasonable’ physical 
theory, they call for a finer theoretical as well as experimental discrimination of the 
topology of 2~ random cellular structures. 
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Appendix 1. Enumeration of the uncouditioual neighbours of a component m 

Amonst the Q ( z )  trees associated with a given valence z ( z a 5 ,  11, section 4, figure 
l ) ,  no (m, z )  have a first component equal to m (1 s m s z - 2 ) .  In order to calculate 
n,(mli, z )  (section 6,  relation (30)), we will define a new operation, which does not 
reduce in general to a single neighbour switching (Weaire and Rivier 1984, figure 9 of 
11). It consists in joining the two dangling sides shared between the component m and 
its two unconditional neighbours (figure l l (a)) ,  and in cutting one of the edges of the 
cycle created by the joining operation (figure l l ( b )  and (e)). 

This joining-cutting operation is illustrated in figure 11 and symbolized in figure 
12 for z = 8, the state (41313312) and m = 4. We define a systematic and unambiguous 
way of performing the cutting operation. For that purpose, we write the state com- 
ponents on a circle, in an anticlockwise positive sense of rotation (figure 12) starting 
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Figure 11. A joining and cutting operation performed on a (41313312) state for z = 8. The 
bold lines in A are joined as shown in B, C is rotated with respect to B for a more 
convenient reading. The bold hatched line in B is cut to give the final state (42133131) in 
C. The circled component m is tbe fint state component in A and C The components in 
squares are the unconditional neighbours of m in the initial state and a conditional 
neighbour of m in the final state while the reverse holds for the components in diamonds. 

Figure It A symbolic representation of the joining and cuuing operation of figure 11. The 
component in diamond in A is the last wnditional neighbour of m =4. The thin lines 
mnnect the m component to its two unconditional neighbours uI = I  and u,=2 (mm- 
ponents in squares). The bold lines connect m to its conditional neighbours (m - 1 lines). 
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with the component m (circled number). The conditional neighbours are sorted accord- 
ing to their position along the circle, starting From m in the positive direction. We 
systematically cut the side of the cycle shared between the m component and its last 
conditional neighbour c (figures 11 and 12, c=3) .  The joiningcutting operation so 
defined is identical with the following set of operations (1,2,3) on the state components 
(figures 11 and 12) 

(i) Consider the state (m, u I ,  . , . , c, . . . , U,). The last conditional neighbour of m 
is c. 
1. Sum up uI and u 2 : u = u , + u 2 .  
2. Split c in two: c = c1 + c 2 ,  cI and c, being the total number of neighbours of 

c located between c and m and between m and c respectively (m is not 
taken into account). 

3. Suppress m, replace U, by U, suppress U,, replace e by the sequence e,, m, cI .  
(e) Rewrite the state components in the positive sense with m as the first component 

(m,  c1,  . . . , U, . . . , c,). 

Figure 12 gives an example of the joining-cutting operation pefiormed on the state 
(41313312) with m=4,  c = 3 ,  u = 1 + 2 ,  c , = 2  and cz= 1 f o r z = 8  whichis transformed 
into (33131421) which finally gives (42133131). The same operation performed on 
(42133131) gives back the initial state. These two states belong to a cycle of length 2. 

For z = 8 and m = 4, n,(4,8) = 14, three cycles of length 4 are obtained besides the 
latter cycle. 

The initial state and the final st' e are in a one-to-one correspondence. In general 
the subset of states with a first component equaI to m is split into cycles of a smaller 
number of trees which are globally left invariant by the transformation. In the final 
state obtained after cutting, we know that U is a conditional neighbour of m. The 
number of states which have a sequence ulmu2 for a given m in a fixed position is 
(relation A2.3 of Le CaEr 1991b after correcting a typing error: 22 - 5 replaces 22+5): 

(Al . l )  n(ullmlu2) ={(U, + U,+ m - 4 ) / ( ~ - 4 ) } C ~ ; ~ ~ - ~ ~ - " * - ~  

for m >  1. The number n,(mli,r) is therefore given by 

= ( i  - I )n , ( i+  m -4, z -2). (A1.2) 

The factor ( i  - 1 )  is simply related to the fact that an i = 1 component has no conditional 
neighbour. The average of P.(mli, z) (relation (29)) has been calculated in 11: 

(&(m, 2 ) )  = [ ( m  + l)/m]{(Zz- m -4)/(2 - l)} .  (A1.3) 

The average of P,(mli, z)(=nJmli, z) /n,(m,  z))  is 

M w  z) )=2Wm, z ) )  (A1.4) 

which is expected on the basis of the statistical equivalence of all fragments of cells 
around the central cell afterjoining (figure Il(6)). Relations (A1.3) and (A1.4) explain 
relation (A1.2) of paper 11. 
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Appendix 2. Convenient relations for tilings by triangles 

Some values of P ( n )  are directly calculated for a DIES on the vertices of a tiling 
by triangles (the vertices of every triangle have respective valences z I ,  z,, z3, 
2, = z1 + 22 + 23): 

3 

m = l  
P(3)  = n - 1 ) / Q ( z m ) l  P(4) = 3P(3) (‘42.1) 

To a given triplet ( z l ,  z 2 ,  z,), we associate an effective valence z, defined as 

(z.)’ = Q ( Z ]  ) Q ( Z ~  Q(ZJ (A2.3) 

W . 4 )  

where z, is in general not an integer. Q e ( z )  is a high precision approximation to Q ( z )  

Qa(z) = 4’ exp{-l/[S(z - 2)]+ 1/[192(z - 2)3]} /{16~”2(z  - l)(z - 2)l”}. 

A direct and straightforward calculation yields values of nm(n)  (section I ) ,  for n = 3, 
4 ,  Z, - 6, which are useful for checking the valdity of the calculation of A,, (relation (39)) 

3 

, = I  
3m(3)=6+4 2 (2z j -5 ) / ( z j -1 )  (A2.5) 

as well as 
3 

4m(4)= lo+$ 1 (7zz-19)/(z t -1)  if all z, > 3 W . 6 )  

4m(4)= 10.5+2 (Sz , -14) / ( z , - l )  i f  one z, = 3 (’42.7) 

, = I  

3 

, = I  

and 

(Z,  - 6 )  m(Z, - 6 )  = 5Zs - 24 (A2.8) 
when Z, + 00, m(2 ,  - 6 )  + 5, a limit very often found and discussed (Peshkin et a1 1991, 
section 3). 

Appendix 3. Concerning the Ahoav-W’eaire law 

An Aboau-U‘eaire parameter for nonlinear nm(n) 

When nm(n) is not linear in n, it is easy and convenient (111) to calculate ‘a’ (equation 
( 1 ) )  from a weighted least-squares fit of nm(n)  with weights W, = P(n) .  The latter fit 
has the unique feature to provide a single parameter a,  from a linear fitting of nm(n) :  

aw =(216+ 12fiz-(nzm(n)))/p.,. (A3.1) 

The average ( n )  and (nm( n ) )  may differ from 6 and (n’) respectively for a finite network 
on a plane. Relations ( 1 )  and (A3.1) are replaced in that case respectively by 

(A3.2) m ( n )  = ( n ) -  a + ( (nm(n)) - (n)2+a(n) ) /n  

a, = ( ( n ) { ( n m ( n ) ) + p J  - ( n ’ h ( n ) ) ) / p 2 .  (A3.3) 
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Nonlinear correlations which yield the Aboav- Weaire law 

Le Ca5r (1991b) has considered a spherical tessellation which consists of z half great 
circles which share two poles and includes an equatorial circle. A 2-3-3-3 tessellation 
is obtained if the half great circles are regularly spaced and if one hemisphere is rotated 
with respect to the second one by half of the spacing. The following relations also 
hold for the corresponding planar tessellation (11) but only in the limit of large z. The 
distribution P ( n )  is given by Po(n -3,  z )  while the Akn are 

Ah =2+{2P.( n -31k -3, z)+ ( n  -4)P,(n -3jk-3, z ) } /P , (k  -3,  z) (A3.4) 
and therefore (relations ( 7 )  and (A1.3, A1.4)) 

nm(n)  = 3 n  +6+2(n-2)(22-  n - 7 ) / ( z -  1). (A3.5) 

If we fix n and if we let Z+OO, we end up with an unusual m ( n ) = 7 - 2 / n ,  which 
increases when n increases, with a distribution P ( n ) ( p 2  =4) and with correlations Au. 
which verify all the required relations for n, k 4: 

P(n)=(n-3 ) /2" ' -* '  (A3.6) 

(A3.7) 

and 

Ah = 2+ [4n +4k  - 32+2( n - 4)( k - 4)( n + k - lo)]/{( n -3)( k - 3)}. 

If we consider the cells with n = z+ 1 edges and if we let Z+OO, we obtain from (A3.5) 
the expected value m ( m )  = 5  instead of 7 given by the linear nm(n) relation. It  seems 
therefore unwise to let Z ~ O O  in such tilings. The consistent set P ( n )  and Akn given by 
(A3.6) and (A3.7) has nevertheless the merit to give rise to an Aboav-Weaire relation 
with a = -1. 
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